
Innovative Lehrkräftebildung, digitally 
enhanced. 





Innovative 
Lehrkräftebildung, 
digitally enhanced. 

Multimodale Impulse aus dem Projekt 
SKILL.de 

INES BRACHMANN; MIRJAM DICK; 
BENJAMIN HEURICH; BENCE 
LUKÁCS; UND ELIŠKA WÖLFL 

ANDREA SIEBER; ANDREAS 
MICHLER; THOMAS STELZL; URS 

HACKSTEIN; TOBIAS KAISER; 
ROMINA SEEFRIED; REGINA HOLZE; 

PETRA MAYRHOFER; MATTHIAS 
BRANDL; KARSTEN FITZ; KARLA 

MÜLLER; JULIA SIWEK; JOHANNES 



PRZYBILLA; FLORIAN 
ZITZELSBERGER; DOROTHE KNAPP; 

UND DANIELA WAWRA 

PASSAU 





Innovative Lehrkräftebildung, digitally enhanced. Copyright © by Ines 
Brachmann; Mirjam Dick; Benjamin Heurich; Bence Lukács; und Eliška Wölfl 
is licensed under a Creative Commons Nammensnennung 4.0 International, 
except where otherwise noted. 

Zitationshinweis: I. Brachmann, M. Dick, B. Heurich, B. Lukács & E. 
Wölfl (Hrsg.), Innovative Lehrkräftebildung, digitally enhanced. 
Multimodale Impulse aus dem Projekt SKILL.de. 

https://creativecommons.org/licenses/by/4.0/


30.  Reporting Good 
Code to Encourage 
Learners 
FLORIAN OBERMÜLLER; UTE HEUER; UND GORDON FRASER 

Abstract 

Block-based programming languages like Scratch 
or mBlock motivate children to be creative while 
learning to program. Even though the creation of 
programs is simplified in block-based languages, 
learning to program can nevertheless be 
challenging. Automated tools therefore support 
learners by providing feedback. Linters check the 
program for potential bugs or code smells in their 
programs. Even when this feedback is elaborate and 
constructive, it still is purely negative and ignores 
what learners have done correctly in their programs. 
In this paper we present the concept of code 
perfumes as the counterpart to code smells, 
indicating the correct application of programming 
practices considered to be good. By analysing what 
learners did right we hope to encourage learners, 
and to provide teachers and students another view 
of learners’ progress. Using a catalogue of 25 code 

Perfumes in Block-Based Programs  |  419



perfumes for Scratch and 18 for mBlock, we 
empirically demonstrate that these represent 
frequent practices. 

 

Introduction 

Learning to program can be challenging and frustrating 
(Hansen & Eddy, 2007), therefore block-based programming 
languages like Scratch (Maloney et al., 2010) or mBlock aim 
to remove some common obstacles, such as the need to 
memorize programming commands and to produce complex, 
but syntactically valid textual structures (Bau et al., 2017) by 
using visual blocks, a single window user interface layout and 
the minimal command set. While these features and the 
community helped Scratch and mBlock to become widely 
used in the computer science education context (McGill & 
Decker, 2020), the reduced complexity can neither ensure 
correctness nor good code quality (Frädrich et al., 2020; 
Hermans et al., 2016; Obermüller et al., 2022; Techapalokul & 
Tilevich, 2017b). So, block-based code can still inhibit bug 
patterns and code smells, which negatively influence the 
young learners coding habits and computational thinking skills 
(Hermans & Aivaloglou, 2016). 

Program analysis Tools like LitterBox (Fraser et al., 2021), 
Hairball (Boe et al., 2013) and Quality Hound (Techapalokul & 
Tilevich, 2017a) can detect these problematic patterns to 
address the problem. Such tools can provide help for the 

420  |  Perfumes in Block-Based Programs



Figure 1. 
Positive 
feedback 
given for 
correctly 
implementi
ng a 
continuous 
check for 
an event 

learners by pointing out bugs and code smells along with 
feedback to help avoid the same problems in the future. 
However, this way only negative aspects of the projects are 
highlighted. 

For acquiring further cognitive skills this corrective feedback 
is very useful (Wisniewski et al., 2020). Contrasting this, 
negative feedback might harm autonomy and self-efficacy 
resulting in decreased intrinsic motivation (Ryan & Deci, 2000; 
Wisniewski et al., 2020). Furthermore, this may lead to negative 
reactions to negative feedback as learners handle feedback 
better when they are motivated (DePasque & Tricomi, 2015). 
Positive feedback is considered to have better effects on the 
motivational aspects especially on task level (Hattie, 2009). 
Concluding effective feedback should include information 
about errors as well as good, correct behaviour so that both 
cognitive and motivational aspects are addressed. 

Code perfumes are introduced as a counterpart to code 
smells, so automated analysis tools can also give feedback to 
the good parts in student projects. Figure 2 shows the positive 
feedback for continuously checking an event. Our previous 
research on code perfumes in both Scratch and mBlock is 
summarized in this paper (Obermüller et al., 2021; Obermüller 
et al., 2022). In detail this summary contains 25 code perfumes 
for Scratch, 18 for mBlock focusing on the CodeyRocky and 
mBot robot and an evaluation addressing the frequency of 
these perfumes. 

 

Perfumes in Block-Based Programs  |  421



Background 

Analysing Block-Based Programs 

Scratch and mBlock are block-based programming languages 
that aim to make programming more accessible for novices 
(Maloney et al., 2010). They favour exploration over recall and 
visually distinguish different categories of blocks (Bau et al., 
2017). Blocks have different shapes that determine how 
statements can be combined, thus trying to prevent 
syntactical errors. However, the resulting code can 
nevertheless contain problems. An important means to 
provide feedback to learners is to identify common patterns of 
blocks in the learners’ programs: 

• Code smells are idioms that decrease the 
understandability of a program and increase the likelihood 
of introducing bugs occurring when modifying the code 
(Fowler, 1999). Multiple code smells for Scratch have either 
been inspired by other programming languages (Hermans 
et al., 2016) or have been defined specially for it (Moreno-
León et al., 2015). There is evidence that code smells 
hamper the ability of learners to understand and modify 
existing code (Hermans & Aivaloglou, 2016) and that code 
smells can decrease the likelihood of projects being reused 
by other users (Techapalokul & Tilevich, 2017b). In order to 
detect code smells in Scratch projects there are automated 
tools to analyse the programs like Hairball (Boe et al., 2013), 
Quality Hound (Techapalokul & Tilevich, 2017a), and 
LitterBox (Fraser et al., 2021). 

• Bug patterns refer to code idioms that are likely to be 
defects (Hovemeyer & Pugh, 2004). These can be detected 
automatically on source code (Louridas, 2006; Novak et al., 

422  |  Perfumes in Block-Based Programs



2010). Bug patterns have been shown to appear frequently 
in Scratch projects (Frädrich et al., 2020) and there are 
automated code analysis tools that can be used to find 
them, such as LitterBox (Fraser et al., 2021). Note that 
instances of bug patterns in code are likely candidates of 
bugs, but are not guaranteed to be incorrect. 

Another way of helping students with the task of finding and 
fixing bugs is through automated tests and program 
verification. These have been introduced to Scratch with the 
tools Whisker (Stahlbauer et al., 2019), Itch (Johnson, 2016) and 
Bastet (Stahlbauer et al., 2020). Both testing and verification 
require either task specific tests or a formal specification that 
describe the expected behaviour. Both can be tedious to create 
and are only fit for one task. In contrast, the patterns described 
above are task-independent and only need to be defined once 
in order to find them in any project. While for the usage in the 
Scratch context only virtual user input and program reactions 
have to be considered, mBlock projects need special handling. 

Educational Robots 

Besides Scratch a popular way to introduce kids to 
programming is using educational robots (McGill & Decker, 
2020). This has multiple reasons: First, robots offer an easy 
starting point as they usually can be controlled without a 
computer, such as the Ozobot robots (Greifenstein et al., 2022; 
Körber et al., 2021). Second, interacting with the environment 
rather than just using graphics on the computer can lead to 
higher learning motivation (Peng et al., 2020). Students have 
to tackle real world problems, like getting values from a sensor 
and letting the robot react based on the measurements. Third, 
programming educational robots leads to an acquisition of 
programming skills combined with abilities like spatial 

Perfumes in Block-Based Programs  |  423



thinking (Jung & Won, 2018) and the use of robots may also 
lead to further discussion about execution of the programs and 
what consequences can stem from it, for example as motors 
could be overstrained or other parts of the robot may be 
damaged when the robot is used wrong. Finally, robots are well 
suited for cross-curricular activities (e. g., physics, art, physical 
education) due to their sensors and actuators (Sullivan & Bers, 
2016). As an example, the physics of a motion sensor can be 
discussed and measured data can be used in classic tasks of 
physic lessons like calculating the average speed of the robot 
from time needed and travelled way. 

Educational robot programming environments are usually 
intended to help transition to solely computer-based 
programming without the use of other physical devices. For 
example, the MakeBlock line of robots and their mBlock1 

programming environment achieve this by using an extended 
version of Scratch (Maloney et al., 2010). mBlock uses exactly 
the same block categories and shapes as Scratch extended 
with new blocks for controlling the robots’ actuators and 
reading the sensors when connected to the computer. 

Two popular types of robots compatible with mBlock are the 
Codey Rocky and the mBot. Both robots have two motors to 
move each side separately. Also, with both robots have sensors 
to detect the intensity of the ambient light, display information 
on an LED matrix and turn LEDs off and on. Furthermore, the 
mBot has an ultra-sonic sensor for measuring distances and 
a line following sensor to detect if the robot is driving over 
dark or bright ground. The Codey Rocky, on the other hand, 
has a gyroscope, additional lights, a colour sensor as well as a 
potentiometer. 

Since both robots have their own challenges rooted in the 
robot specific programming based upon sensors and 

1. http://mblock.makeblock.com/ 

424  |  Perfumes in Block-Based Programs

http://mblock.makeblock.com/


actuators, bug patterns and code smells fitting for this learning 
scenario have been defined (Obermüller et al., 2022). This 
naturally also results in automated feedback about 
problematic code that can be received by LitterBox. However, 
positive feedback on good code parts should also be 
considered. 

Feedback and Learning 

Feedback generated by program analysis tools is generally 
assumed to be effective, in particular, because the feedback 
is returned regardless of other characteristics of the student 
and is accordingly perceived as less threatening (Hattie, 2009). 
Teachers face the challenge of not only having to assess, but 
also having to support students with their individual problems 
when programming (Michaeli & Romeike, 2019; Sentence & 
Csizmadia, 2017; Yadav et al., 2016) and tools can be of help 
in analysing their students’ misunderstandings and currently 
lacking skills. 

Albeit effects of feedback on intrinsic motivation are 
generally assumed to be small, but nonetheless depend on 
the type of feedback (Wisniewski et al., 2020). On one hand, 
negative feedback tends to reduce the perceived autonomy 
and self-efficacy both influencing factors on the intrinsic 
motivation (Ryan & Deci, 2000; Wisniewski et al., 2020). Positive 
feedback on the other hand, might lead to a higher intrinsic 
motivation (Hattie, 2009). Especially for learners and novices, 
positive feedback is effective to keep up motivation (Fishbach 
et al., 2010). There is also evidence that more motivated learners 
process feedback better (DePasque & Tricomi, 2015), so 
combined feedback containing positive and negative aspects 
alike may be better than only negative feedback. This supports 
the need for positive feedback in automated program analysis 
for novices. 

Perfumes in Block-Based Programs  |  425



Code Perfumes 

Notion of a Code Perfume 

Quality problems in source code is considered to ‘smell bad’. 
Based on this metaphor we consider good code to smell code, 
like a perfume. Therefore, we call code idioms indicating the 
correct application of programming concepts code perfumes. 
As with code smells, the presence of code perfumes does not 
give information about desired functionality: You can 
implement the wrong functionality using correctly applied 
programming concepts and vice versa. Furthermore, code 
perfumes are not intended to be the single indicator for 
automated grading of student code, as the number of 
perfumes can be easily increased by adding correctly used 
coding concepts that do not contribute to the functionality of 
the project. 

Code Perfumes in Scratch 

Code perfumes for Scratch are aspects of code that correctly 
apply concepts related to use of Sprites and their interactions, 
in particular correct use of initialisation, collisions and user 
interaction. The following description of code perfumes is 
taken from our previous work (Obermüller et al., 2021). 

• Backdrop Switch: Changing to a backdrop in Scratch 
games or animated stories should likely induce some state 
alterations in one or more sprites or backdrops. This can 
elegantly be implemented using appropriate switch 
backdrop to options together with when backdrop 
switches to event handlers to start the desired actions. 

426  |  Perfumes in Block-Based Programs



Backdrop Switch is inspired by a possible fix of the Missing 
Backdrop Switch bug pattern (Frädrich et al., 2020). 

• Boolean Expression: The presence of combinations of 
expressions (i. e., < , = and > blocks) and Boolean operators (i. 
e., and , or and not blocks) can be indicative of attempts to 
properly simplify control flow (Seiter & Foreman, 2013). Note 
that only instances without Comparing Literals patterns 
(Frädrich et al., 2020) will be reported. 

• Collision: Continuous collision checks (sprite touches edge 
or other sprite) that implicate adapted reactions (e. g., 
move, change look) are used to implement basic game and 
animation behaviour in Scratch (Talbot et al., 2020; Werner 
et al., 2020). 

• Conditional Inside Loop: Considered as an advanced code 
structure (Talbot et al., 2020), this perfume is checking for 
loops that contain at least one conditional construct. For 
example, an if else statement within a repeat until block. 

• Controlled Broadcast Or Stop: The timing and conditions 
for when to start other scripts via a broadcast, or when to 
stop scripts, must be correct for a right program behaviour. 
So, a check for a condition, which must be met before 
broadcasting or stopping, to control both these actions 
is useful (Amanullah & Bell, 2018). Furthermore, to ensure 
correct timing, the block responsible for this must be 
within a loop. 

• Coordination: The existence of a wait until statement in 
a Scratch program might be a sign of an effort to adapt 
the coordination of scripts to changing control flows (Seiter 
and Foreman, 2013). 

• Correct Broadcast: Properly implemented message 
broadcasts should at least consist of matching sending 
and receiving blocks. Correct Broadcast is inspired by fixes 
of the Message Never Received and the Message Never 
Sent bug pattern (Frädrich et al., 2020). 

• Custom Block Usage: To identify solutions of subtasks that 

Perfumes in Block-Based Programs  |  427



might be reusable and to implement appropriate custom 
procedures is considered to be good programming 
practice. This finder is inspired by fixes of the Call Without 
Definition bug pattern (Frädrich et al., 2020). It detects the 
presence and use of custom blocks. 

• Directed Motion: Controlling sprite movement by keyboard 
inputs is a common task in games and animated stories. 
A simple implementation consists of a when key pressed 
event handler followed by point in direction and move 
steps statements (Talbot et al., 2020; Werner et al., 2020). 

• Gliding Motion: This finder reports another simple 
implementation to manipulate sprite movement: a when 
key pressed event handler followed by one or more glide 
secs to statements (Talbot et al., 2020; Werner et al., 2020). 

• Initialisation of Looks: Defining the start state of games 
and animated stories is especially useful, since Scratch 
does not perform any default resetting of attributes 
automatically. Furthermore, it is considered a good 
programming practice to think about desired initial states 
of program executions. Look blocks like costume or 
backdrop setter statements being present in when green 
flag clicked scripts are reported by this finder. This might 
indicate that learners tried to solve a subtask of the 
defining a start state problem. The presence of this and 
the next pattern is used by Seiter and Foreman (Seiter & 
Foreman, 2013) to measure computational thinking skills of 
students. 

• Initialisation of Positions: This perfume finder reports 
position setter statements being present in when green 
flag clicked scripts possibly indicating that learners tried to 
solve another subtask of the defining a start state problem. 

• List Usage: The existence of list-statements in Scratch 
programs might be a sign of an effort to hold and process 
a number of values efficiently. 

• Loop Sensing: Continuously checking for touch or key 

428  |  Perfumes in Block-Based Programs



events inside a forever or repeat until loop is a useful 
pattern to implement event processing in Scratch. This 
perfume is inspired by a possible fix of the bug pattern 
Missing Loop Sensing (Frädrich et al., 2020). 

• Matching Parameter: Properly implemented custom 
blocks consist at least of a signature containing a complete 
parameter list: all parameters, that are used inside a 
custom block, are to be present in the list. This perfume 
finder is inspired by fixes of the Orphaned Parameter bug 
pattern (Frädrich et al., 2020). It detects whether all 
parameters used are also declared in the custom block. 

• Mouse Follower: Sprite movement can be controlled by 
mouse input. This behaviour can be implemented in 
Scratch by a loop containing either a go to mouse-pointer 
statement or a combination of point towards mouse-
pointer and move steps statements (Talbot et al., 2020). 

• Movement In Loop: To avoid Stuttering Movement 
(Frädrich et al., 2020) when controlling sprites by keyboard 
input it is recommended to use a loop with a conditional 
containing a key pressed, expression and appropriate 
actions. 

• Nested Conditional Checks: Nested conditional checks (i. e., 
nested if then and if else blocks) can be seen as advanced 
code structures (Amanullah & Bell, 2018; Talbot et al., 2020). 

• Nested Loops: The presence of nested loops, where the 
inner one is accompanied by other blocks preceding or 
following it to not have a Nested Loop smell (Fraser et 
al., 2021), might be indicative for attempts to implement 
advanced control flow (Talbot et al., 2020). 

• Object Follower: In some games or animations one sprite 
follows another for at least a certain time (Talbot et al., 
2020). This can be implemented using a loop containing 
a point towards statement targeting the other sprite, 
followed by a move steps statement. 

• Parallelisation: The presence of two scripts with the same 

Perfumes in Block-Based Programs  |  429



hat block can be indicative of attempts to implement 
independent subtasks more clearly and readably (Seiter & 
Foreman, 2013). 

• Say Sound Synchronisation: A nice way to enhance 
interaction between program and player is to use both 
say and play sound blocks in a synchronous way to let 
sprites talk. However, this say sound synchronisation is not 
straightforward in Scratch. It can be implemented by 
placing a play sound file block, playing a message, right 
after the say block that shows the message in a speech 
bubble. As soon as the sound file ends, the speech bubble 
must be cleared by using an empty say block afterwards 
(Boe et al., 2013). 

• Timer: Timing durations is a useful subtask in many Scratch 
programming problems. This finder reports the usage of a 
variable that is changed repeatedly (inside, e. g., a forever 
loop) by a fixed value in combination with a wait seconds 
statement. (Talbot et al., 2020; Werner et al., 2020). 

• Useful Position Check: Checking position and distance 
values can be quite error-prone since floating point values 
are used and have to be compared. A bigger-than or less-
than operator to compare values can be a fix to the 
Position Equals Check bug pattern (Frädrich et al., 2020). 

• Valid Termination Condition: The repeat until statement 
requires a termination condition, otherwise the loop will 
run forever and code following the loop will never be 
executed. This perfume is inspired by a possible fix of the 
Missing Termination Condition bug pattern (Frädrich et al., 
2020). 

Code Perfumes in mBlock 

Code perfumes for mBlock are aspects of code that correctly 
apply concepts related to robot use, in particular correct use of 

430  |  Perfumes in Block-Based Programs



sensory data and actuators. The following description of code 
perfumes is taken from our previous work (Obermüller et al., 
2022). 

• Colour Usage: Appropriate values for colours are integers 
from 0 to 255. 

• Correct Sensing: Queries involving a sensor should use a 
valid value range. This indicates comprehension of the 
sensing concept, which is frequently used in robot 
programming. Depending on the sensor used, we 
distinguish several variants of this code perfume: 

◦ Battery Sensing: The value range for Battery Sensing is 
from 0 to 100. 

◦ Colour Sensing: The value range for Colour Sensing is 
from 0 to 255. 

◦ Distance Sensing: The value range for Distance 
Sensing is from 3 to 400. 

◦ Light Sensing: The value range for Light Sensing is 
from 0 to 100 on the Codey Rocky and from 0 to 1020 
on the mBot. 

◦ Line Sensing: The values for Line Sensing are the 
integers from 0 to 3. 

◦ Loudness Sensing: The value range for Loudness 
Sensing is from 0 to 100. 

◦ Pitch Angle Sensing: The value range for Pitch Angle 
Sensing is from -180 to 180. 

◦ Potentiometer Sensing: The value range for 
Potentiometer Sensing is from 0 to 100. 

◦ Roll Angle Sensing: The value range for Roll Angle 
Sensing is from -90 to 90. 

◦ Shaking Sensing: The value range for Shaking Sensing 
is from 0 to 100. 

• Correct Actuator Deactivation: When using blocks that 
activate an actuator, one must be aware of the necessity 
of also deactivating them. Writing a separate script for 

Perfumes in Block-Based Programs  |  431



turning the actuators off is often useful and shows that this 
robot specific usage of actuators has been understood. We 
define several versions of this code perfume depending on 
the specific actuator used: 

◦ LED Off 
◦ Light Off 
◦ Matrix Off 
◦ Motor Off 

• Loop Sensing: In order to make the robot react to a specific 
change of a sensor’s value, one must continuously read 
the corresponding sensor values. Using queries concerning 
sensors within a loop indicates the comprehension of this 
robot typical concept of sensing. 

• Motor Usage: The motors of the robots can be controlled 
with a minimum of 0% and a maximum of 100%. When 
using the mBot robot, values beneath 25% have the same 
effect as 0%. Therefore, appropriate values range from 0 to 
100 for the Codey Rocky robot, and from 25 to 100 for the 
mBot robot. 

• Parallelisation: Writing several scripts with the same hat 
block can be indicative of attempts to implement 
independent subtasks at a higher readability level. 

Evaluation 

This evaluation summarises parts of the evaluation done in our 
prior work (Obermüller et al., 2021; Obermüller et al., 2022). 

Experimental Setup 

To evaluate the different types of code patterns for Scratch 

432  |  Perfumes in Block-Based Programs



and mBlock projects, we empirically investigated the following 
research questions: 

RQ1: How common are code perfumes in Scratch programs? 
RQ2: How common are code perfumes in mBlock programs 

for Codey Rocky and mBot? 

Analysis Tool 

In order to study the occurrence of the patterns listed in 
Section 3 in mBlock programs, we utilise the LitterBox tool. 
LitterBox handles the analysis of Scratch and mBlock programs 
by automatically converting a project into an abstract syntax 
tree (AST), where each block is represented by a node. After 
conversion the tree is checked for the presence of block 
combinations indicating a code perfume utilising a visitor 
pattern. We added new finders for these perfumes according 
to the guidelines of prior work (Fraser et al., 2021). 

Dataset 

• Scratch dataset: We use the dataset by Frädrich et al. 
created to study bug patterns (Frädrich et al., 2020). It 
consists of 74,907 Scratch projects mined over the course 
of 3 weeks. 

• mBlock dataset: We created a dataset of 28,192 mBlock 
programs by mining all publicly shared projects from the 
mBlock website until the April 2021. Out of these programs, 
16,569 contain a Codey Rocky or mBot robot (and 
sometimes more than one). The remaining projects 
contain code for other robots. Continuing the filtering 
process, we removed all programs containing no code 
inside the robots. After this step 3,540 relevant projects 

Perfumes in Block-Based Programs  |  433



with a total of 529 Codey Rocky robots and 3,023 mBot 
robots, including 27 projects utilising both robots, remain. 

Methodology 

To answer RQ1, we applied LitterBox to the dataset containing 
random Scratch projects. For checking how common code 
perfumes are we consider the total number of code perfumes 
found, the instances found for each type of perfume, as well as 
the number of projects containing at least one perfume. 

To answer RQ2, we consider the LitterBox findings reported 
for all the mBlock specific code perfumes on the mBlock 
dataset. For each code perfume, we inspect the total number 
of instances found and how many programs are affected. 

Threats to Validity 

We used large datasets for both Scratch and mBlock programs, 
but results may not generalise to other programs. In particular, 
the data mining can only download publicly shared projects, 
and incomplete programs may not be shared having different 
properties. While we analysed how frequent code perfumes 
are, we generally did not evaluate their effects on learners. 

How common are code perfumes in 
Scratch? 

We found instances of all 25 Scratch code perfumes in the 
dataset. In total, there are 4,712,055 code perfume instances, 
and 73,787 projects contained at least one code perfume. The 
exact numbers for each type of perfume are summarised in 

434  |  Perfumes in Block-Based Programs



Tabl
e 1. 
Num
ber 
of 
perfu
me 
insta
nces 
foun
d in 
total 
and 
num
ber 
of 
proje
cts 
cont
ainin
g the 
perfu
me. 

Tabl
e 2. 
Num
ber 
of 
perfu
me 
insta
nces 
foun
d in 
total 
and 
num
ber 
of 
proje
cts 
cont
ainin
g the 
code 
perfu
me. 

Table 1. Note that a project may contain more than one type 
of code perfume and also multiple instances of the same 
perfume type, so the numbers of projects containing one type 
of perfume do not add up to the total number of projects 
inspected. 

The Parallelisation code perfume shows most perfume 
instances (1,142,319) overall. This can be attributed to the parallel 
nature of Scratch programs. The other code perfume with an 
outstanding high total number of instances found is Boolean 
Expression (1,037,703). This again is natural as the Boolean 
operators in Scratch are a crucial part to regulate the control 
flow without having to nest multiple if then blocks. This is a 
simple way to prevent a Nested Loops code smell. 

There is a much bigger difference between projects using 
Initialisation of Looks (54,065) to total number of perfumes 

Perfumes in Block-Based Programs  |  435



(473,814) than for Initialisation of Positions with 38,824 projects 
containing a total of 131,560 perfumes. This is because the 
perfume checking for the looks blocks has multiple possible 
initialisations (e. g., visibility, size and costume) whereas the 
other one just looks at the position. Lists are the least used 
Scratch Feature (Amanullah & Bell, 2020), but users knowing 
how to handle lists use them frequently, as indicated by the 
130,290 instances of List Usage in only 4,082 projects. 

Considering the number of projects containing code 
perfumes, the most common perfume is Parallelisation 
occurring in 70,519 projects. Again, this is not surprising due to 
the parallel Scripts used as basis for the event-driven paradigm 
used in Scratch. The low weighted method count (WMC) of 
49.74 of the projects containing Parallelisation furthermore 
suggests that this concept is already used in quite small 
projects. 

The frequent occurrence of Initialisation of Looks (54,065) 
and Initialisation of Positions (38,824) is also intuitive, since 
initialisation of sprites in Scratch is usually necessary for 
programs to work correctly. For both the WMC is comparatively 
low, showing that initialisation of looks and position is also 
needed and important in early stages of programming. 

The rather low occurrences of the motion related Gliding 
Motion (1,810), Directed Motion (2,116) and Movement in Loop 
(11,665) perfumes is supported by prior research (Frädrich et 
al., 2020) which found frequent occurrences of the Stuttering 
Movement bug pattern. This suggests that learners prefer to 
follow the event-driven but simpler approach of detecting 
events with the dedicated blocks, even though this results in 
stuttering movement. The least common perfume is Say 
Sound Synchronisation appearing in only 41 projects. 

This perfume is not directly related to any programming 
concept and likely only useful in specific types of animation 
projects, therefore lower numbers can be expected. 

436  |  Perfumes in Block-Based Programs



How common are code perfumes in 
mBlock programs for Codey Rocky and 
mBot? 

We found instances for 16 of the 18 code perfumes defined in 
Section 3.2. In total there are 14,495 code perfume instances, 
and 2,284 projects containing at least one code perfume. Table 
2 shows the number of code perfume instances found for each 
type, the number of projects containing at least one instance 
of the respective code perfume, and the average weighted 
method count of these programs. A project may contain more 
than one type of code perfume and also multiple instances of 
the same perfume type. 

As visualised by the table two code perfumes were not found 
in the dataset: The Colour Sensing code perfume depends on 
the Colour Detection sensor, which is rarely used. For Light Off 
the likely reason is that there are only 529 Codey Rocky projects 
in the dataset. 

The most frequent code perfume is Motor Usage with 10,896 
instances. It is followed by Distance Sensing (1,204) and Colour 
Usage (829). Both perfumes concerning the correct usage of 
actuators represent the easiest and most basic way of working 
with robots. Distance Sensing is also to be expected as it relates 
to the most used sensor. 

Battery Sensing (1), Pitch Angle Sensing (1), Roll Angle 
Sensing (2), Shaking Sensing (3) and Potentiometer Sensing 
(5), all are based on sensors which are not used frequently in 
the dataset. Matrix Off (2) and LED Off (9) are also quite rare, 
demonstrating that returning the robot to a neutral state after 
the program has finished execution is not frequently done. 
However, the low complexity of projects exhibiting LED Off, 
Motor Off, and Matrix Off shows that it is not difficult to 
correctly turn off these actuators. This leads to the notion that 

Perfumes in Block-Based Programs  |  437



actuators are rarely turned off because of the difficulty, but 
because users may not be aware it should be done. 

The fact that Line Sensing is used in more complex projects 
(25.72) seems surprising at first, as it is a common and easy task. 
However, line following tasks tend to require several control 
structures, i. e., at least one loop and then one if block for each 
of the four states of the sensor; this may explain the higher 
complexity. The average complexity of projects containing 
Loop Sensing (9.36) is low because most robot programs need 
a sensing loop in order to react to the real world. 

Conclusion 

A common ground is important for providing feedback. 
Negative aspects of code in Scratch and mBlock can be 
pointed out with bug patterns and code smells. However, in 
order to provide more individualised feedback, and especially 
for encouraging learners, providing feedback about positive 
aspects of the code is also essential. For defining a vocabulary 
about good coding practices, we introduced and empirically 
evaluated a catalogue of 25 code perfumes in Scratch and 18 
in mBlock. Our evaluation found occurrences of all Scratch 
perfumes and 16 types in mBock. 

An important next step will be to study the effects of these 
positive code patterns and the feedback on the learning 
success of novice programmers. Furthermore, the benefit for 
teachers, who need to get an overview of their students’ 
Scratch programs in order to provide individual feedback, is 
another interesting topic. Hence, another important aspect of 
future work will be to evaluate the impact of positive linting on 
help teachers provide to their students. 

In order to support the use of code perfumes as means of 
individual feedback and further research, all our code 

438  |  Perfumes in Block-Based Programs



perfumes are implemented directly into LitterBox, which is 
freely available at: https://scratch-litterbox.org. 

References 

Amanullah K. & Bell T. (2018). Analysing students’ scratch 
programs and addressing issues using elementary patterns. 
2018 IEEE Frontiers in Education Conference (FIE), 1–5. 
https://doi.org/10.1109/FIE.2018.8658821 

Amanullah K. & Bell T. (2020). Teaching Resources for Young 
Programmers: the use of Patterns. 2020 IEEE Frontiers in 
Education Conference (FIE), 1–9. https://doi.org/10.1109/
FIE44824.2020.9273985 

Bau D., Gray J., Kelleher C., Sheldon J., Turbak F. (2017). 
Learnable Programming: Blocks and Beyond. Communications 
of the ACM 60, 72–80. https://doi.org/10.1145/3015455 

Boe B., Hill C., Len M., Dreschler G., Conrad P., Franklin D. 
(2013). Hairball: Lint-inspired static analysis of scratch projects. 
SIGCSE 2013 – Proceedings of the 44th ACM Technical 
Symposium on Computer Science Education, 215–220. 
https://doi.org/10.1145/2445196.2445265 

DePasque S. & Tricomi E. (2015). Effects of intrinsic motivation 
on feedback processing during learning. NeuroImage 119, 
175–186. https://doi.org/10.1016/j.neuroimage.2015.06.046 

Fishbach A., Eyal T., Finkelstein S. R. (2010). How positive and 
negative feedback motivate goal pursuit. Social and 
Personality Psychology Compass 4, 517–530. https://doi.org/
10.1111/j.1751-9004.2010.00285.x 

Fowler M. (1999). Refactoring: Improving the Design of 
Existing Code. Addison-Wesley, Boston, MA, USA. 

Frädrich C., Obermüller F., Körber N., Heuer U., Fraser G. 
(2020). Common Bugs in Scratch Programs. Proceedings of 
the 2020 ACM Conference on Innovation and Technology in 

Perfumes in Block-Based Programs  |  439

https://scratch-litterbox.org/
https://doi.org/10.1109/FIE.2018.8658821
https://doi.org/10.1109/FIE44824.2020.9273985
https://doi.org/10.1109/FIE44824.2020.9273985
https://doi.org/10.1145/3015455
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1016/j.neuroimage.2015.06.046
https://doi.org/10.1111/j.1751-9004.2010.00285.x
https://doi.org/10.1111/j.1751-9004.2010.00285.x


Computer Science Education, 89–95. https://doi.org/10.1145/
3341525.3387389 

Fraser G., Heuer U., Körber N., Obermüller F., Wasmeier E. 
(2021). LitterBox: A Linter for Scratch Programs. 2021 IEEE/ACM 
43rd International Conference on Software Engineering: 
Software Engineering Education and Training, 183–188. 
https://doi.org/10.1109/ICSESEET52601.2021.00028 

Greifenstein L., Graßl I., Heuer U., Fraser G. (2022). Common 
Problems and Effects of Feedback on Fun When Programming 
Ozobots in Primary School. Proceedings of the 17th Workshop 
in Primary and Secondary Computing Education. Article 5, 1–10. 
https://doi.org/10.1145/3556787.3556860 

Hansen S. & Eddy E. (2007). Engagement and Frustration 
in Programming Projects. Proceedings of the 38th SIGCSE 
Technical Symposium on Computer Science Education 
271–275. https://doi.org/10.1145/1227310.1227407 

Hattie J. (2009). Visible Learning: A Synthesis of Over 800 
Meta-Analyses Relating to Achievement. https://doi.org/
10.4324/9780203887332 

Hermans F. & Aivaloglou E. (2016). Do code smells hamper 
novice programming? A controlled experiment on Scratch 
programs. 2016 IEEE 24th International Conference on 
Program Comprehension, 1–10. https://doi.org/10.1109/
ICPC.2016.7503706 

Hermans F., Stolee K. T., Hoepelman D. (2016). Smells in Block-
Based Programming Languages. 2016 IEEE Symposium on 
Visual Languages and Human-Centric Computing, 68–72. 
https://doi.org/10.1109/VLHCC.2016.7739666 

Hovemeyer D. & Pugh W. (2004). Finding Bugs is Easy. 
SIGPLAN Not. 39, 92–106. https://doi.org/10.1145/1052883.1052895 

Johnson D. E. (2016). ITCH: Individual Testing of Computer 
Homework for Scratch Assignments. Proceedings of the 47th 
ACM Technical Symposium on Computing Science Education, 
223–227. https://doi.org/10.1145/2839509.2844600 

Jung, S.E.; Won, E.-s. (2018). Systematic Review of Research 

440  |  Perfumes in Block-Based Programs

https://doi.org/10.1145/3341525.3387389
https://doi.org/10.1145/3341525.3387389
https://doi.org/10.1109/ICSESEET52601.2021.00028
https://doi.org/10.1145/3556787.3556860
https://doi.org/10.1145/1227310.1227407
https://doi.org/10.4324/9780203887332
https://doi.org/10.4324/9780203887332
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/VLHCC.2016.7739666
https://doi.org/10.1145/1052883.1052895
https://doi.org/10.1145/2839509.2844600


Trends in Robotics Education for Young Children. 
Sustainability, 1-24. https://doi.org/10.3390/su10040905 

Körber N., Bailey L., Greifenstein L., Fraser G., Sabitzer B., 
Rottenhofer M. (2021). An Experience of Introducing Primary 
School Children to Programming using Ozobots (Practical 
Report). The 16th Workshop in Primary and Secondary 
Computing Education, Article 23, 1–6. https://doi.org/10.1145/
3481312.3481347 

Louridas P. (2006). Static code analysis. IEEE Software 23, 
58–61. https://doi.org/10.1109/MS.2006.114 

Maloney J., Resnick M., Rusk N., Silverman B., Eastmond E. 
(2010). The Scratch Programming Language and Environment. 
ACM Transactions on Computing Education, 1-15. 
https://doi.org/10.1145/1868358.1868363 

McGill M. M.& Decker A. (2020). Tools, Languages, and 
Environments Used in Primary and Secondary Computing 
Education. Proceedings of the 2020 ACM Conference on 
Innovation and Technology in Computer Science Education, 
103–109. https://doi.org/10.1145/3341525.3387365 

Michaeli T. & Romeike R. (2019). Current Status and 
Perspectives of Debugging in the K12 Classroom: A Qualitative 
Study. 2019 IEEE Global Engineering Education Conference 
(EDUCON), 1030–1038. https://10.1109/EDUCON.2019.8725282 

Moreno-León J., Robles G. & Román-González M. (2015). Dr. 
Scratch: Automatic Analysis of Scratch Projects to Assess and 
Foster Computational Thinking. RED-Revista de Educación a 
Distancia, 1-23. https://doi.org/10.6018/red/46/10 

Novak J., Krajnc A., Žontar R. (2010). Taxonomy of static code 
analysis tools. The 33rd International Convention MIPRO. 
418–422. 

Obermüller F., Bloch L., Greifenstein L., Heuer U., Fraser G. 
(2021). Code Perfumes: Reporting Good Code to Encourage 
Learners. The 16th Workshop in Primary and Secondary 
Computing Education, 1–10. https://doi.org/10.1145/
3481312.3481346 

Perfumes in Block-Based Programs  |  441

https://doi.org/10.3390/su10040905
https://doi.org/10.1145/3481312.3481347
https://doi.org/10.1145/3481312.3481347
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3341525.3387365
https://10.0.4.85/EDUCON.2019.8725282
https://doi.org/10.6018/red%2F46%2F10
https://doi.org/10.1145/3481312.3481346
https://doi.org/10.1145/3481312.3481346


Obermüller F., Pernerstorfer R., Bailey L., Heuer U., Fraser G. 
(2022). Common Patterns in Block-Based Robot Programs. 
Proceedings of the 17th Workshop in Primary and Secondary 
Computing Education. Article 4, 1–10. https://doi.org/10.1145/
3556787.3556859 

Peng L., Bai M., Siswanto I. (2020). A study of learning 
motivation of senior high schools by applying unity and mblock 
on programming languages courses. Journal of Physics: 
Conference Series. 12-37. https://doi.org/10.1088/1742-6596/1456/
1/012037 

Ryan R. M. & Deci E. L. (2000). Intrinsic and extrinsic 
motivations: Classic definitions and new directions. 
Contemporary educational psychology 25, 54–67. 
https://doi.org/10.1007/s10639-016-9482-0 

Seiter L. & Foreman B. (2013). Modeling the learning 
progressions of computational thinking of primary grade 
students. Proceedings of the ninth annual international ACM 
conference on International computing education research, 
59–66. https://doi.org/10.1145/2493394.2493403 

Sentance S. & Csizmadia A. (2017). Computing in the 
curriculum: Challenges and strategies from a teacher’s 
perspective. Education and Information Technologies 22, 
469–495. https://doi.org/10.1007/s10639-016-9482-0 

Stahlbauer A., Frädrich C., Fraser G. (2020). Verified from 
Scratch: Program Analysis for Learners’ Programs. Proceedings 
of the International Conference on Automated Software 
Engineering (ASE), 150-162. https://doi.org/10.1145/
3324884.3416554 

Stahlbauer A., Kreis M., Fraser G. (2019). Testing scratch 
programs automatically. Proceedings of the 2019 27th ACM 
Joint Meeting on European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering. 
165–175. https://doi.org/10.1145/3338906.3338910 

Sullivan A., Bers M. U. (2016). Robotics in the early childhood 
classroom: learning outcomes from an 8-week robotics 

442  |  Perfumes in Block-Based Programs

https://doi.org/10.1145/3556787.3556859
https://doi.org/10.1145/3556787.3556859
https://doi.org/10.1088/1742-6596/1456/1/012037
https://doi.org/10.1088/1742-6596/1456/1/012037
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1145/3324884.3416554
https://doi.org/10.1145/3324884.3416554
https://doi.org/10.1145/3338906.3338910


curriculum in prekindergarten through second grade. 
International Journal of Technology and Design Education 26, 
3–20. https://doi.org/10.1007/s10798-015-9304-5 

Talbot M., Geldreich K., Sommer J., Hubwieser P. (2020). Re-
use of programming patterns or problem solving? 
Representation of Scratch programs by TGraphs to support 
static code analysis. Proceedings of the 15th Workshop on 
Primary and Secondary Computing Education. 1–10. 
https://doi.org/10.1145/3421590.3421604 

Techapalokul P. & Tilevich E. (2017a). Quality Hound — An 
online code smell analyzer for scratch programs. 2017 IEEE 
Symposium on Visual Languages and Human-Centric 
Computing, 337–338. https://doi.org/10.1109/
VLHCC.2017.8103498 

Techapalokul P. & Tilevich E. (2017b). Understanding 
Recurring Quality Problems and Their Impact on Code Sharing 
in Block-Based Software. 2017 IEEE Symposium on Visual 
Languages and Human-Centric Computing, 43–51. 
https://doi.org/10.1109/VLHCC.2017.8103449 

Werner L., Denner J., Campe S., Torres D. M. (2020). 
Computational sophistication of games programmed by 
children: a model for its measurement. ACM Transactions on 
Computing Education (TOCE) 20, 1–23. https://doi.org/10.1145/
3379351 

Wisniewski B., Zierer K., Hattie J. (2020). The power of 
feedback revisited: A meta-analysis of educational feedback 
research. Frontiers in Psychology 10, Article 3087. 
https://doi.org/10.3389/fpsyg.2019.03087 

Yadav A., Gretter S., Hambrusch S., Sands P. (2016). Expanding 
computer science education in schools: understanding teacher 
experiences and challenges. Computer Science Education 26, 
235–254. https://doi.org/10.1080/08993408.2016.1257418 

Perfumes in Block-Based Programs  |  443

https://doi.org/10.1007/s10798-015-9304-5
https://doi.org/10.1145/3421590.3421604
https://doi.org/10.1109/VLHCC.2017.8103498
https://doi.org/10.1109/VLHCC.2017.8103498
https://doi.org/10.1109/VLHCC.2017.8103449
https://doi.org/10.1145/3379351
https://doi.org/10.1145/3379351
https://psycnet.apa.org/doi/10.3389/fpsyg.2019.03087
https://doi.org/10.1080/08993408.2016.1257418


Florian Obermüller 

Medien-Attributierungen 

• Positive feedback given for correctly implementing a 
continuous check for an event © Florian Obermüller, Ute 
Heuer, Gordon Fraser is licensed under a CC BY 
(Namensnennung) license 

• Table 1. Number of perfume instances found in total and 
number of projects containing the perfume. © Florian 
Obermüller, Ute Heuer, Gordon Fraser is licensed under a 
CC BY (Namensnennung) license 

• Table 2. Number of perfume instances found in total and 
number of projects containing the code perfume. © 
Florian Obermüller, Ute Heuer, Gordon Fraser is licensed 
under a CC BY (Namensnennung) license 

About the Authors 

Florian Obermüller is a research assistant in Computer Science 
Education and a PhD student at the chair for Software 
Engineering II at the University of Passau, Germany. He passed 
the first state examination for secondary schools (teaching 
degree for computer science and mathematics) and has a 
master’s degree in computer science. The main focus of his 
research is automated generation of feedback to improve 
programming learning scenarios. 

444  |  Perfumes in Block-Based Programs

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Ute Heuer 
https://www.ddi.fim.uni-passau.de 

Gordon Fraser 

Ute Heuer is an Akademische Direktorin in Computer Science 
Education at the University of Passau, Germany. She passed 
the state examinations for secondary schools (teaching degree 
for mathematics, physics and computer science) and worked 
as a teacher at several schools in Bavaria. She is interested in 
improving the quality of computer science learning, instruction 
and teacher training at primary and secondary level. 

Gordon Fraser is a full professor in Computer Science at the 
University of Passau, Germany. He received a PhD in computer 
science from Graz University of Technology, Austria, worked as 
a post-doc at Saarland University, and was a Senior Lecturer 
at the University of Sheffield, UK. The central theme of his 
research is improving software quality, and his recent research 
concerns the prevention, detection, and removal of defects in 
software. 

Perfumes in Block-Based Programs  |  445

https://www.ddi.fim.uni-passau.de/


Zitation und 
Lizenzhinweise 

Brachmann, I., Dick, M., Heurich, B., Lukács, B. & Wölfl, E. (Hrsg.), 
Innovative Lehrkräftebildung, digitally enhanced. Multimodale 
Impulse aus dem Projekt SKILL.de. Verfügbar unter: 
https://oer.pressbooks.pub/skilldeopenbook/ 

Innovative Lehrkräftebildung, digitally enhanced. Copyright © by Ines 
Brachmann; Mirjam Dick; Benjamin Heurich; Bence Lukács; und Eliška Wölfl 
is licensed under a Creative Commons Nammensnennung 4.0 International, 
except where otherwise noted. 

Zitation und Lizenzhinweise  |  509

https://creativecommons.org/licenses/by/4.0/



