"

30 Homework: Chain Rule

  1. Watch this video from Khan Academy:
    Chain Rule Definition and example

  2. Take the derivative of the following functions, each of which involves the chain rule.
    1. a(x)=(x2+5)20
      40x(x2+5)19

      ans
    2. b(x)=ex2
      2xex2

      ans
    3. c(x)=(kx+r)n for constants k, r, n.
      kn(kx+r)n1

      ans
    4. d(x)=(ln(x))3+ln(x3)
      3(ln(x))2x+3x

      ans
    5. e(x)=sin(cos(x))
      sin(x)cos(cos(x))

      ans
    6. f(x)=esin(x)+cos(x)
      (cos(x)sin(x))esin(x)+cos(x)

      ans
    7. g(x)=3x25x+6
      6x523x25x+6

      ans
    8. h(x)=ex
      ex

      ans
  3. For each problem, try simplifying the logarithm first, then taking the derivative.
    1. ddxln(x3)
      3x

      ans
    2. ddxln(xex)
      1x+1

      ans
  4. Use logarithm rules to explain why ddxln(e5x)=ddxln(x).
    Using logarithm rules, we have that ln(e5x)=ln(x)+ln(e5)=ln(x)+5. This has the same derivative as ln(x) since we are just adding a constant.

    ans
  5. Recall that ln(x) and ex are inverse functions. This means that ln(ex)=x, and eln(x)=x (that is, the e and the ln cancel out if you do one right after the other). This fact allows us to compute ddx2x.
    1. Simplify eln(2)
      =2

      ans
    2. Simplify ln(e2).
      =2

      ans
    3. Simplify eln(2)+x
      2ex

      ans
    4. Simplify (eln(2)x)
      2x

      ans

    5. Use part (d) to compute ddx2x.
      ln(2)2x

      ans

License

Icon for the Creative Commons Attribution 4.0 International License

Informal Calculus Copyright © by Tyler Seacrest is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.