"

46 Homework: Introduction to Differential Equations

  1. Describe as best you can at this point in your own words what a differential equation is.
  2. Following earnings example from the previous chapter, if the number of employees in a company is growing at a rate of [latex]0.05[/latex] times the number of employees, what is a differential equation that describes this situation?
    [latex]E'(t) = 0.05 E(t)[/latex].

    ans
  3. Verify the function [latex]f(x) = e^x - x - 1[/latex] solves the differential equation:

    [latex]f'(x) = f(x) + x[/latex]

    We see
    \begin{align*}
    f'(x) & = f(x) + x \\
    e^x – 1 & = (e^x – x – 1) + x \\
    e^x – 1 & = e^x – 1
    \end{align*}
    as desired.

    ans
  4. Verify the function [latex]f(x) = 2 \sqrt{x}[/latex] satisfies the differential equation:

    [latex]f'(x) = \frac{2}{f(x)}.[/latex]

    We see
    \begin{align*}
    f'(x) & = \frac{2}{f(x)} \\
    x^{-1/2} & = \frac{2}{2 \sqrt{x}} \\
    \frac{1}{\sqrt{x}} & = \frac{1}{\sqrt{x}}
    \end{align*}
    as desired.

    ans
  5. For each differential equation, find [latex]f'(t)[/latex] for the given value of [latex]t[/latex], or state there is not enough information.
    1. Suppose [latex]f'(t) = 3 f(t) + 5[/latex] and [latex]f(3) = -1[/latex]. Find [latex]f'(3)[/latex].
      [latex]2[/latex]

      ans
    2. Suppose [latex]f'(t) = t + f(t)[/latex], and [latex]f(7) = 1[/latex]. Find [latex]f'(7)[/latex].
      [latex]8[/latex]

      ans
    3. Suppose [latex]f'(t) = \frac{1}{ \sqrt{f(t)} }[/latex] and [latex]f(0) = 9[/latex]. Find [latex]f'(0)[/latex].
      [latex]\frac{1}{3}[/latex]

      ans
    4. Suppose [latex]f'(t) = e^{-f(t)}[/latex] and [latex]f(0) = 1[/latex]. Find [latex]f'(1)[/latex].
      Not enough information.

      ans
  6. For each relationship between the value of a function and its derivative, write down a differential equation. For example, if I said “a function is growing at a rate equal to seven times the value of the function” you’d write down [latex]f'(t) = 7 f(t)[/latex].
    1. A function is growing at a rate equal to twice the function value.
      [latex]f'(t) = 2 f(t)[/latex]

      ans
    2. A function is growing at a rate equal to the square root of the function value.
      [latex]f'(t) = \sqrt{f(t)}[/latex]

      ans
    3. A function is growing at a rate equal to [latex]t[/latex] times the function value.
      [latex]f'(t) = t f(t)[/latex]

      ans
    4. A function is accelerating at a rate equal to the sum of the function value and how quickly the function is growing.
      [latex]f''(t) = f'(t) + f(t)[/latex].

      ans
  7. Verify that the given solution to each differential equation is correct.
    1. Differential equation [latex]f'(t) = f(t) + 3[/latex], solution [latex]f(t) = 3 e^t - 3[/latex].
      \begin{align*}
      f'(t) & = f(t) + 3 \\
      \frac{d}{dt}(3e^t – 3) & = (3e^t – 3) + 3 \\
      3e^t & = 3e^t
      \end{align*}

      ans
    2. Differential equation [latex]f'(t) = 4\sqrt{f(t)}[/latex], solution [latex]f(t) = 4 t^2[/latex].
      \begin{align*}
      f'(t) & = 4 \sqrt{f(t)} \\
      \frac{d}{dt}(4 t^2) & = 4 \sqrt{4 t^2} \\
      8t & = 4(2t) \\
      8t & = 8t.
      \end{align*}

      ans
    3. Differential equation [latex]f'(t) = (f(t))^2[/latex], solution [latex]f(t) = -t^{-1}[/latex].
      \begin{align*}
      f'(t) & = (f(t))^2 \\
      \frac{d}{dt} (-t^{-1}) & = (-t^{-1})^2 \\
      t^{-2} & = t^{-2}
      \end{align*}

      ans
    4. Differential equation [latex]f'(t) = e^{-f(t)}[/latex], solution [latex]f(t) = \ln(t)[/latex].
      \begin{align*}
      f'(t) & = e^{-f(t)} \\
      \frac{d}{dt} \ln(t) & = e^{-\ln(t)} \\
      \frac{1}{t} & = \frac{1}{e^{\ln(t)}} \\
      \frac{1}{t} & = \frac{1}{t}
      \end{align*}

      ans

License

Icon for the Creative Commons Attribution 4.0 International License

Informal Calculus Copyright © by Tyler Seacrest is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.