"

65 Homework: Power, exponential, trig, and logarithmic rules

  1. Compute the following definite integrals.
    1. [latex]\int_{2}^3 x^3 + 2 \sqrt{x} dx[/latex]
      19.04

      ans
    2. [latex]\int_{-2}^3 (x + 5)^2dx[/latex]
      [latex]\approx 161.7[/latex]

      ans
    3. [latex]\int_{0}^{1} e^xdx[/latex]
      [latex]e - 1 \approx 1.718[/latex]

      ans
    4. [latex]\int_{-1}^1 3 e^xdx[/latex]
      [latex]7.05[/latex]

      ans
    5. [latex]\int_{1}^{e} \frac{3}{x} + \frac{x}{3}\ dx[/latex]
      [latex]\approx 4.06[/latex]

      ans
  2. Approximate [latex]\int_0^1 x^2dx[/latex] using [latex]4[/latex] rectangles. Then find [latex]\int_0^1 x^2[/latex] exactly using an anti-derivative. How far off is the approximation?
    Approximation [latex]\approx 0.22[/latex], the actual is [latex]\frac{1}{3} \approx .33[/latex], so the difference is about [latex]0.11[/latex] or [latex]50[/latex] error which isn't great. As we know, the rectangles don't always do such a good job.

    ans

License

Icon for the Creative Commons Attribution 4.0 International License

Informal Calculus Copyright © by Tyler Seacrest is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.