"

64 Power, exponential, trig, and logarithm rules

We’ve already seen the inverse power rule, but here it is again:

[latex]\boxed{\int x^mdx = \frac{x^{m + 1}}{m+1} + C}[/latex]

Note that this only works if [latex]m \neq -1[/latex]. However, we haven’t seen how this works with fractional and negative powers yet. We’ll do some examples of this.

We can also “undo” the derivatives for exponential, logarithmic functions, or trigonometric functions.

[latex]\boxed{\int e^xdx = e^x + C}[/latex]

[latex]\boxed{\int \frac{1}{x}dx = \ln(x) + C}[/latex]

[latex]\boxed{\int \sin(x)dx = -\cos(x) + C}[/latex]

[latex]\boxed{\int \cos(x)dx = \sin(x) + C}[/latex]

On to the examples. Recall that [latex]x^{-m} = \frac{1}{x^m}[/latex] and [latex]x^{1/m} = \sqrt[m]{x}[/latex].

Power rule with fractional and negative powers

  • Find [latex]\int_4^9 x^{-3} + 2x^{1/2}dx[/latex].

    Negative and fractional powers work the same way as the positive powers we’ve been working with. We see
    \begin{align*}
    \int_4^9 x^{-3} + 2x^{1/2}dx & = \int_4^9 x^{-3}dx + 2 \int_4^9 x^{1/2}dx \\
    & = \left( \frac{x^{-2}}{-2} \right) + 2 \left( \frac{x^{3/2}}{3/2} \right) \Big|_4^9 \\
    & = \frac{1}{-2x^2} + 2 \frac{2 x^{3/2}}{3} \Big|_4^9 \\
    & = \frac{1}{-2x^2} + \frac{4 x^{3/2}}{3} \Big|_4^9 \\
    & = \left( \frac{1}{-2(9)^2} + \frac{4 (9)^{3/2}}{3} \right) – \left( \frac{1}{-2(4)^2} + \frac{4 (4)^{3/2}}{3} \right) \\
    & = \left( -\frac{1}{162} + \frac{108}{3} \right) – \left( -\frac{1}{32} + \frac{32}{3} \right)
    \end{align*}
    At this point, let’s just type it into a calculator to get an approximate answer. We see that the integral is about [latex]\boxed{23.36}[/latex].

  • Find [latex]\int_1^2 \frac{1}{x^4}dx[/latex].

    This problem becomes an inverse power rule problem if we notice that [latex]\frac{1}{x^4} = x^{-4}[/latex]. We see
    \begin{align*}
    \int_1^2 \frac{1}{x^4}dx & = \int_1^2 x^{-4}dx \\
    & = \frac{x^{-5}}{-5} \Big|_1^2 \\
    & = -\frac{1}{5x^5} \Big|_1^2 \\
    & = \left( -\frac{1}{5(2)^5} \right) – \left( -\frac{1}{5(1)^5} \right) \\
    & = -\frac{1}{160} + \frac{1}{5} \\
    & = -\frac{1}{160} + \frac{32}{160} \\
    & = \boxed{\frac{31}{160}}.
    \end{align*}

  • Find [latex]\int_{25}^{100} \sqrt{x}dx[/latex].

    If we remember that [latex]x^{1/2} = \sqrt{x}[/latex], this is a power rule problem.
    \begin{align*}
    \int_{25}^{100} \sqrt{x}dx & = \int_{25}^{100} x^{1/2}dx \\
    & = \frac{x^{3/2}}{3/2} \Big|_{25}^{100} \\
    & = \frac{2 x^{3/2}}{3} \Big|_{25}^{100} \\
    & = \left( \frac{2 (100)^{3/2}}{3} \right) – \left( \frac{2 (25)^{3/2}}{3} \right) \\
    & = \frac{2000}{3} – \frac{250}{3} \\
    & = \boxed{\frac{1750}{3}}.
    \end{align*}

Now for logarithmic and exponential functions.

Logarithmic and Exponential functions and integration

  • Find [latex]\int_1^5 \frac{2}{x}dx[/latex].

    For this problem, you may be tempted to write this as [latex]2x^{-1}[/latex] and use the inverse power rule. Good instincts, but in this case it won’t work (try it: it leads to division by zero!). So instead, let’s invert the natural logarithm derivative.
    \begin{align*}
    \int_1^5 \frac{2}{x}dx & = 2 \int_1^5 \frac{1}{x}dx \\
    & = 2 \left( \ln(x) \right) \Big|_1^5 \\
    & = (2 \ln(5)) – (2 \ln(1)) \\
    & = 2 \ln(5) – 0 \\
    & = 2 \ln(5) \approx \boxed{3.2}.
    \end{align*}

  • Find [latex]\int_{-2}^2 7 e^{x}dx[/latex].

    [latex]e^x[/latex] is the best function for calculus. Doesn’t change with integration!

    \begin{align*}
    \int_{-2}^2 7 e^xdx & = 7 \int_{-2}^2 e^xdx \\
    & = 7 (e^x) \Big|_{-2}^2 \\
    & = (7 e^{2}) – (7 e^{-2})
    \end{align*}
    Not a lot to do to simplify this, but we can get a decimal approximation: [latex]\approx \boxed{50.78}[/latex].

License

Icon for the Creative Commons Attribution 4.0 International License

Informal Calculus Copyright © by Tyler Seacrest is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.