List of Equations

Name

SI Unit

Equation

Number

 

 

 

Macrofluidics

Density

Kg/m3

    \[ \rho = \frac{M}{V} \]

2.1

Shear stress

N/m2

    \[ \tau = \mu \frac{du}{dy}\]

2.2

Shear force

N

    \[ F = \tau A = \mu A \frac{du}{dy} \]

2.3

Kinematic viscosity

m2/s

    \[ v = \frac{\mu}{\rho} \]

2.4

Bulk modulus

Pa

    \[ k = \rho \frac{dp}{d\rho} \]

2.5

Surface tension

N/m2

    \[ \sigma_s = \frac{F}{L} \]

2.6

Hydraulic diameter of a duct

m

    \[ D_h = \frac{4a^2}{4a} = a \]

2.8

Bernoulli equation

    \[ P + \frac{1}{2}\rho v^2 + pgh = const. \]

2.9

Microfluidics

Conservation of mass

    \[ \frac{\delta p}{\delta t} + \nabla(pv) = 0 \]

3.1

Conservation of momen-tum

    \[ \p\frac{\delta V}{\delta t} + p(V \cdot \nabla)V = -\nabla p + \eta \nabla ^2 V + pg \]

3.2

Euler Equation

    \[ \p\frac{\delta V}{\delta t} + p(V \cdot \nabla)V = -\nabla p + \eta \nabla ^2 V + pg \]

3.3

Stokes flow

    \[ \nabla p = \eta \nabla ^2 V \]

3.4

Microfluidics

Casson model

    \[ \sqrt{m Pa} \]

    \[ \sqrt{\tau} = \sqrt{\tau_y} + \sqrt{\upeta \dot{\gamma}}} \]

4.1

Blood wave speed (1)

m/s

    \[ c = \frac{r_i}{2 \beta p} \]

4.2

Blood wave speed (2)

m/s

    \[ c = \sqrt{\frac{Eh}{4pr_i}} \]

4.3

Flow separation

    \[ \frac{\delta ^2 u}{\delta y^2} = \frac{1}{\mu} \frac{\delta p}{\delta x} \]

4.4

Navier stokes equation

    \[ \frac{\delta(\rho u)}{\delta t} + \bigtriangledown (\rho u  \overrightarrow{V} = - \frac{\delta p}{\delta x} + \frac{\delta \tau_{xx}}{\delta x} + \frac{\delta \tau_{yx}}{\delta y} + \frac{\delta \tau_{zx}}{\delta z} + \rho f_x \]

    \[ \frac{\delta(\rho v)}{\delta t} + \bigtriangledown (\rho v  \overrightarrow{V} = - \frac{\delta p}{\delta y} + \frac{\delta \tau_{xy}}{\delta x} + \frac{\delta \tau_{yy}}{\delta y} + \frac{\delta \tau_{zy}}{\delta z} + \rho f_y \]

    \[ \frac{\delta(\rho w)}{\delta t} + \bigtriangledown (\rho w  \overrightarrow{V} = - \frac{\delta p}{\delta z} + \frac{\delta \tau_{xz}}{\delta x} + \frac{\delta \tau_{yz}}{\delta y} + \frac{\delta \tau_{zz}}{\delta z} + \rho f_z \]

7.1

Laser fre-quency

1/s

    \[ \omega = \frac{2v sin. \frac{\theta}{2}}{\lambda} \]

8.1

Dimensionless numbers

Reynolds number

    \[ Re = \frac{v \cdot D}{v} = \frac{\rho \cdot v \cdot D}{\mu} \]

2.7

Dean number

    \[ De = \frac{\rho D v}{\mu} \sqrt{\frac{D}{2R_c}} = Re\sqrt{\frac{D}{2R_c}} \]

3.5

Peclet number

    \[ Pe = \frac{U \cdot L}{D} \]

3.6

Womersley number

    \[ \alpha = L(\frac{\omega \rho}{\mu})^{\frac{1}{2}} \]

4.5

Strouhal number

    \[ St = \frac{fd}{v} \]

Table 7.1

Cavitation number

    \[ Ca = \frac{p - p_v}{\frac{1}{2} \rho v^2} \]

Table 7.1

Prandtl number

    \[ Pr = \frac{\mu C_p}{k} \]

Table 7.1

Weber number

    \[ We = \frac{\rho v^2 L}{\sigma} \]

Table 7.1

Capillary number

    \[ C = \frac{\mu v}{\sigma} \]

Table 7.1

 

License

Micro- and Biofluidics Copyright © by sbeier. All Rights Reserved.

Share This Book